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Motivation

Theorem (Yedidia/Freeman/Weiss, 2000)

Fixed points of the sum-product algorithm (SPA) correspond to

stationary points of the Bethe variational free energy (BVFE).

FBethe(α) = UBethe(α)︸ ︷︷ ︸
linear in α

− HBethe(α)︸ ︷︷ ︸
non-linear in α

.
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Overview of Talk

Basics: codes and graphical models

Philosophical background of our approach: graph covers and their

relevance for message-passing iterative decoding

Bethe entropy . . .

. . . and an interpretation of its meaning

. . . and weight spectra

. . . and the edge zeta function
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Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following

two equations:

H =


1 1 1 0 0

0 1 0 1 1


 ⇒

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

In summary,

C =
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣∣∣ H · xT = 0
T (mod 2)

}

=



(x1, x2, x3, x4, x5) ∈ F5

2

∣∣∣∣∣∣
x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)



 .
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H =


1 1 1 0 0

0 1 0 1 1




fXOR(1)x2 = u2

x3

x4

x5
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y3

y4
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x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

fXOR(2)
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H =




1 1 1 0 0
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x1

x2

x3

x4

x5

Low-density parity-check codes (LDPC)

codes are defined by parity-check

matrices with very few ones.

A (j, k)-regular LDPC code is a code

whose Tanner graph has uniform variable

node degree j and uniform check node

degree k.

One can show that Tanner graphs of

good codes have cycles. (We assume

bounded alphabet size and bounded

subcode complexity.)
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original graph
(possible)

M -fold cover of
original graph

· · ·

· · · · · ·

· · ·

M

π2 π3

π1

π5

π4

An M -fold cover is also called a cover of degree M . Do not confuse

this degree with the degree of a vertex!

Note: a graph G with E edges has (M !)E M -fold covers.
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i-th iteration i.5-th iteration

. . . where root is bit node 2

computation tree (without channel function nodes)

. . . where root is a copy of bit node 2
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Message-Passing Iterative Decoding

Why do factor graph covers matter?

Well, a locally operating decoding algorithm cannot distinguish if it is

decoding on the original factor graph or on any of its covers.

all codewords from all covers are also competing to be the best!
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Message-Passing Iterative Decoding

Three questions:

Are there codewords in graph covers that cannot be explained by

codewords in the base graph?

Yes!

Can we characterize the set of codewords given by graph covers?

Yes! ⇒ Local marginal polytope, i.e., domain of Bethe entropy

Can we somehow count the codewords given by graph covers?

Yes! ⇒ Bethe entropy
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Base factor/Tanner graph

of a length-7 code

Possible double cover of

the base factor graph

Let us study the codes defined by the graph covers of the base

Tanner/factor graph.
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But in the double cover of the base normal factor graph there are also

codewords that are not liftings of codewords in the base factor graph!

X1
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X7X2

X5
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X4
?
⇐ X′′
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1
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2

X′
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X′′
3
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4

X′
5
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5

X′
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6X′
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What about(
1

2
,
1

2
,
1

2
,
2

2
,
1

2
,
1

2
,
1

2

)
? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)

⇒ We will call such a vector a

(graph-cover) pseudo-codeword.
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Codewords in Graph Covers

Theorem:

Consider a binary linear C defined by the parity-check matrix H.

Let P , P(H) be the first-order LP relaxation of conv(C)

(aka fundamental polytope of H).

Let P ′ be the set of all pseudo-codewords obtained through

codewords in finite covers.

Then P ′ is dense in P , i.e.

P ′ = P ∩ Qn.

Moreover, note that all vertices of P are vectors with rational entries

and are therefore also in P ′.
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The components of the pseudo-marginal

α =
{
{αi}i∈I , {αj}j∈J

}

associated to the valid configuration x̃ are de-

fined to be

αi ,
1

M

∑

m∈[M ]

x̃i,m,

αj ,
1

M

∑

m∈[M ]

x̃j,m.

The mapping from any M -fold graph cover to

the base graph will be called ϕM .
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Theorem:

Consider a binary linear C defined by the parity-check matrix H.

Let L , L(H) be the local marginal poltyope of the factor graph

corresponding to H.

Let L′ be the set of all pseudo-marginals obtained through

codewords in finite covers.

Then L′ is dense in L, i.e.

L′ = L ∩ Qdim(L).

Moreover, note that all vertices of L are vectors with rational entries

and are therefore also in L′.
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The Mapping ϕM

More formally, for any positive integer M , ϕM is the mapping

ϕM :
{(

G̃, x̃
) ∣∣∣ G̃ ∈ G̃M , x̃ is a valid configuration in G̃M

}
→ L

(
G̃, x̃

)
7→ α

where G̃M is the set of all M -fold covers of the base graph G.

Important: the graph G̃ ∈ G̃M needs to be included in the tuple(
G̃, x̃

)
, otherwise x̃ is not well defined. This is especially crucial once

we consider the inverse mapping ϕ−1
M .
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Graph Cover Hierarchy
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ϕ2

ϕ3

Let α ∈ L′ be a pseudo-marginal. Then consider:

lim sup
M→∞

1

M
log

#ϕ−1
M (α)

#G̃M



Graph Cover Hierarchy

· · ·

· · · · · ·· · ·

ϕ2

ϕ3

Let α ∈ L′ be a pseudo-marginal.

Theorem: lim sup
M→∞

1

M
log

#ϕ−1
M (α)

#G̃M

= HBethe(α)
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Comments on the Previous Theorem

Similarly to the computation of the asymptotic growth rate of

average Hamming spectra one has to be somewhat careful in

formulating the above limit; we leave out the details.

Note: The ratio

#ϕ−1
M (α)

#G̃M

represents the average number of valid configurations x̃ per

M -fold cover with associated pseudo-marginal α. Therefore,

HBethe(α) gives the asymptotic growth rate of that quantity.
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Comments on the Previous Theorem

The above result is based on similar computations as in the

derivation of the asymptotic growth rate of the average Hamming

weight of protograph-based LDPC codes. Cf.

[Fogal/McEliece/Thorpe, 2005],

papers by Divsalar, Ryan, et al. (2005–).

To the best of our knowledge, the above interpretation of the

Bethe entropy cannot be found in the literature (besides the talks

that we gave at the 2008 Allerton Conference / 2009 ITA

Workshop in San Diego).
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“Micro-/Macrostate Reinterpretation”
of the Theorem by Yedidia et al.

Assume

P (microstate) = const for all microstates.

Then

P (macrostate) ∝ #
{
microstate : ϕM(microstate)=macrostate

}

= #ϕ−1
M (macrostate)

∝
#ϕ−1

M (macrostate)

#G̃M

≈
∝ exp

(
M · HBethe(macrostate)

)
.
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“Micro-/Macrostate Reinterpretation”
of the Theorem by Yedidia et al.

Assume

P (microstate) ∝ exp
(
− M · E

(
ϕM(microstate)

))
for all microstates.

Then

P (macrostate) ∝ exp
(
− M · E(macrostate)

)

· #
{
microstate : ϕ(microstate)=macrostate

}

= exp
(
− M · E(macrostate)

)
· #ϕ−1(macrostate)

≈
∝ exp

(
− M · E(macrost.)

)
· exp

(
M · HBethe(macrost.)

)
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Re-interpretation in terms of graph covers:
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Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)

Fixed points of the SPA correspond to local minima of the

Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:

A fixed point of the SPA corresponds to a macrostate α,

i.e., a pseudo-marginal α, that is a local maximimum of

P (α) ∝ exp
(
− M ·

〈
α,λ

〉)
· #ϕ−1(α)

when M goes to infinity.
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Static vs. Dynamic Setup

Symbols: σ: microstate, Σ: macrostate.

Static setup: models fix points of the SPA

P (Σ) ∝ exp
(
− M · E(Σ)

)
· #ϕ−1(Σ)

Dynamic setup:

P
(
Σ(t + ∆t)

∣∣ σ(t)
)

∝ exp
(
− M · E

(
Σ(t + ∆t)

∣∣ σ(t)
))

· #ϕ−1
(
Σ(t + ∆t)

∣∣ σ(t)
)

“Better” dynamic setup: will model the transient part of the SPA

P
(
Σ(t + ∆t)

∣∣ Σ(t)
)

∝ exp
(
− M · E

(
Σ(t + ∆t)

∣∣ Σ(t)
))

· #ϕ−1
(
Σ(t + ∆t)

∣∣ Σ(t)
)
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Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in

terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

Let Γ be a set of graphs.

Let Ψ be some (possibly random) mapping from Γ to Γ.

Because the domain and the range of Ψ are equal, it makes sense

to study the repeated application of the mapping Ψ:

Γ
Ψ

−→ Γ
Ψ

−→ · · ·
Ψ

−→ Γ



Review
(of the setup used in the re-interpretation of f.p.s of the SPA)

Set of microstates

,

((
G̃, x̃

) ∣∣∣ G̃ ∈ G̃M , x̃ is a valid configuration in G̃M

)

Mapping ϕM

maps
(
G̃, x̃

)
to ω(x̃)

Set of macrostates

, ϕM(set of microstates)
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Corresponding Setup for the
Transient Part of the SPA

Set of microstates

???

Mapping ϕM

???

Set of macrostates

???

Note: Γ = set of M -covers of G and valid configurations therein

is obviously not sufficient.
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Corresponding Setup for the
Transient Part of the SPA

Set of microstates

⇒ Γ = set of what we call colored hypergraph M -cover

or colored twisted M -cover

Mapping ϕM

???

Set of macrostates

set of all possible marginals on the LHS function nodes

× set of all possible marginals on the RHS function nodes
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Comment on Microstates

in FFG

edge corrsponding edges corresponding edges

in some colored 3-cover

LHS and RHS marginals

in colored hypergraph 3-cover

must match

LHS and RHS marginals

do not have to match

+
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Comment on Macrostates

←−
µ(0) −→

µ(0.5) ←−
µ(1) −→

µ(1.5) ←−
µ(2)

ηleft(0) ηleft(1) ηleft(2)ηleft(0) ηleft(1)

ηright(−.5) ηright(0.5)ηright(0.5) ηright(1.5) ηright(1.5)
.

⇒ This can be considered as a "message-free version of the SPA".

Cf. “Message-free version of belief-propagation”

in [Wainwright/Jaakkola/Willsky, 2003].



Bethe Entropy and Weight Spectra
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Induced Bethe Entropy

For any ω ∈ P(H), define the induced Bethe entropy to be

HBethe(ω) , HBethe

(
α

)∣∣
α=ΨBME(ω)

,

where ΨBME(ω) is the Bethe max-entropy pseudo-marginal α ∈ L

among all the pseudo-marginals in L that correspond to ω.



Evaluating the Bethe Free Entropy
Along the Cube Diagonal



Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (j, k)-regular LDPC code of length n.



Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (j, k)-regular LDPC code of length n.

Evaluating 1
n
HBethe

(
(ω, . . . , ω)

)
for ω ∈ [0, 1] we obtain (here for

(j, k) = (3, 6)):



Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (j, k)-regular LDPC code of length n.

Evaluating 1
n
HBethe

(
(ω, . . . , ω)

)
for ω ∈ [0, 1] we obtain (here for

(j, k) = (3, 6)):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ω

(1
/n

) 
H

B
et

he
((

ω
, …

, ω
))



Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (j, k)-regular LDPC code of length n.

Evaluating 1
n
HBethe

(
(ω, . . . , ω)

)
for ω ∈ [0, 1] we obtain (here for

(j, k) = (3, 6)):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ω

(1
/n

) 
H

B
et

he
((

ω
, …

, ω
))

This function happens to equal the exponent of the asymptotic average

Hamming weight distribution for Gallager’s ensemble of (j, k)-regular

LDPC codes!



Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (j, k)-regular LDPC code of length n.

Evaluating 1
n
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(
(ω, . . . , ω)

)
for ω ∈ [0, 1] we obtain (here for
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Let’s look at − 1
n
HBethe

(
(ω, . . . , ω)

)
.
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Remember that FBethe(ω) = UBethe(ω)−HBethe(ω).

Remember that UBethe(ω) is linear in ω.

Therefore, we see that for a finite-length code from an ensemble

with asymptotically linearly growing minimum Hamming distance,

FBethe(ω) is not a convex function of ω.
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Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

Example:

X2

X1

X3

X4

X5

X6

X7

X1

X2

X3

X4

X7

X5

X6

Tanner/factor graph
Corresponding

normal factor graph



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):
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Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .

u1

u2

u3

u4

u7

u5

u6

Here: g(Γ) = u1u2u3

The monomial of Γ is given by

g(Γ) , ui1 · · ·uik ,

where the ui’s are indeterminates.



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

The edge zeta function of X is defined to be the power series

ζX(u1, . . . , un) ∈ Z[[u1, . . . , un]]

given by

ζX(u1, . . . , un) =
∏

[Γ]∈A(X)

1

1 − g(Γ)
,

where A(X) is the collection of equivalence classes of backtrackless,

tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably

infinite.



The Edge Zeta Function of a Graph

Theorem (Bass):

The edge zeta function ζX(u1, . . . , un) is a rational function.

More precisely, for any directed graph ~X of X, we have

ζX(u1, . . . , un) =
1

det
(
I − UM( ~X)

) =
1

det
(
I − M( ~X)U

)

where

I is the identity matrix of size 2n,

U = diag(u1, . . . , un, u1, . . . , un) is a diagonal matrix of

indeterminants.

M( ~X) is a 2n × 2n matrix derived from some directed graph

version ~X of X.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 1: Theorem)

Theorem:

Let C be a cycle code defined by a parity-check matrix H having

normal graph N , N(H).

Let n = n(N) be the number of edges of N .

Let ζN(u1, . . . , un) be the edge zeta function of N .

Then

the monomial u
p1

1 . . . upn

n has a nonzero coefficient

in the Taylor series expansion of ζN

if and only if

the corresponding exponent vector (p1, . . . , pn)

is an unscaled pseudo-codeword for C.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 2: Example)

u1

u2

u3

u4

u7

u5

u6

This normal graph N has the following inverse edge zeta function:

ζN(u1, . . . , u7) =
1

det(I14 − UM)

=
1

1 − 2u1u2u3 + u2
1u

2
2u

2
3 − 2u5u6u7 + 4u1u2u3u5u6u7 − 2u2

1u
2
2u

2
3u5u6u7

−4u1u2u3u
2
4u5u6u7 + 4u2

1u
2
2u

2
3u

2
4u5u6u7 + u2

5u
2
6u

2
7 − 2u1u2u3u

2
5u

2
6u

2
7

+u2
1u

2
2u

2
3u

2
5u

2
6u

2
7 + 4u1u2u3u

2
4u

2
5u

2
6u

2
7 − 4u2

1u
2
2u

2
3u

2
4u

2
5u

2
6u

2
7



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 3: Example)

u1

u2

u3

u4

u7

u5

u6

The Taylor series exansion is

ζN(u1, . . . , u7)

= 1 + 2u1u2u3 + 3u2
1u

2
2u

2
3 + 2u5u6u7

+ 4u1u2u3u5u6u7 + 6u2
1u

2
2u

2
3u5u6u7

+ 4u1u2u3u
2
4u5u6u7 + 12u2

1u
2
2u

2
3u

2
4u5u6u7

+ · · ·

We get the following exponent vectors:
(0, 0, 0, 0, 0, 0, 0) codeword

(1, 1, 1, 0, 0, 0, 0) codeword

(2, 2, 2, 0, 0, 0, 0) pseudo-codeword (in Z-span)

(0, 0, 0, 0, 1, 1, 1) codeword

(1, 1, 1, 0, 1, 1, 1) codeword

(2, 2, 2, 0, 1, 1, 1) pseudo-codeword (in Z-span)

(1, 1, 1, 2, 1, 1, 1) pseudo-codeword (not in Z-span)

(2, 2, 2, 2, 1, 1, 1) pseudo-codeword (in Z-span)



The Newton Polytope of a Polynomial

p2

p1

Here: P (u1, u2)

= u0
1u

0
2 +3u1

1u
2
2 +4u3

1u
1
2−2u4

1u
5
2

Definition:

The Newton polytope of a

polynomial P (u1, . . . , un) in n

indeterminates is the convex hull

of the points in n-dimensional

space given by the exponent

vectors of the nonzero monomi-

als appearing in P (u1, . . . , un).

Similarly, we can associate a

polyhedron to a power series.
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Through the Zeta Function

Collecting the results from the previous slides we get:

Proposition: Let C be some cycle code with parity-check matrix H

and normal factor graph N(H).

The Newton polyhedron of the edge zeta function of N(H)

equals

the conic hull of the fundamental polytope P(H)

(aka the fundamental cone K(H)).

However, what is the meaning of the coefficients of the monomials in

the Taylor series expansion of the edge zeta function?
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The first term is the directional derivative of the induced Bethe
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zeta function ζN(H) and whose exponent vector equals a positive

multiple of ω.
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Connecting the Bethe Entropy and the
Edge Zeta Function of a Cycle Code

In the above theorem we used the following definition:

For every ω ∈ R
|E|
+ we define

Gcoeff

(
ζG,ω

)
, lim sup

s→∞

1

s
log coeff

(
ζG(u),us·ω

)

to be the asymptotic growth rate of the coefficients of the

monomials that appear in the Taylor series expansion of the edge

zeta function ζG of the graph G and whose exponent vector equals

a positive multiple of ω.

For example, if ω = 1
2
· (1, 1, 1, 2, 1, 1, 1) then we consider the

asymptotic growth rate of the coefficients of the monomials

u1
1u2

1u3
1u4

2u5
1u6

1u7
1, u1

2u2
2u3

2u4
4u5

2u6
2u7

2, u1
3u2

3u3
3u4

6u5
3u6

3u7
3, . . .
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Theorem: Let ω be a pseudo-codeword with rational components.

Then

d

dt
HBethe(tω)
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t↓0
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Connecting the Bethe Entropy and the
Edge Zeta Function of a Cycle Code

Theorem: Let ω be a pseudo-codeword with rational components.

Then

d

dt
HBethe(tω)

∣∣∣∣
t↓0

= ‖ω‖1 · HMP(ω) = Gcoeff

(
ζN(H),ω

)
.



Connecting the Bethe Entropy and the
Edge Zeta Function of a Cycle Code

Theorem: Let ω be a pseudo-codeword with rational components.

Then

d

dt
HBethe(tω)

∣∣∣∣
t↓0

= ‖ω‖1 · HMP(ω) = Gcoeff

(
ζN(H),ω

)
.

The first term is the directional derivative of the induced Bethe

entropy at the origin in the direction of ω.

The second term is a scaled version of the entropy rate of some

time-invariant Markov process that is associated with ω.

The third term is the growth rate of the coefficients of the

monomials that appear in the Taylor series expansion of the edge

zeta function and whose exponent vector equals a positive multiple

of ω.



Another Result about the
Bethe Entropy around the Origin

Theorem (second-order derivative result of the Bethe entropy):

The larger the eigenvalue gap between the largest and second-largest

eigenvalue of the adjacency matrix of the normal factor graph, the

larger the curvature of the Bethe entropy around the origin.



Another Result about the
Bethe Entropy around the Origin

Theorem (second-order derivative result of the Bethe entropy):

The larger the eigenvalue gap between the largest and second-largest

eigenvalue of the adjacency matrix of the normal factor graph, the

larger the curvature of the Bethe entropy around the origin.

⇒ Use so-called Ramanujan graphs to obtain graphical models whose

Bethe entropy has maximal curvature around the origin.



Connection to Results by
Watanabe and Fukumizu

It turns out that the our setup and the setup by [Watanabe/Fukumizu,

this workshop / NIPS 2009] are dual to each other in the sense that the

sets of valid configurations are given by dual Forney-style factor graphs.
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It turns out that the our setup and the setup by [Watanabe/Fukumizu,

this workshop / NIPS 2009] are dual to each other in the sense that the

sets of valid configurations are given by dual Forney-style factor graphs.
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However, the type of obtained results are quite different.
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Conclusions / Outlook

We have given an interpretation of the Bethe entropy and a

re-interpretation of the theorem by Yedidia/Freeman/Weiss.

⇒ A similar (re-)interpretation can also be given for the

Kikuchi entropy and generalized belief propagation.

⇒ Also new insights also for survey propagation?

We have discussed why from a coding-theoretic point of view it

can be desirable to have a convex-concave Bethe variation free

energy.

We have discussed a connection between Bethe entropy and the

edge zeta function of cycle codes.

⇒ See also the talk on Friday morning by Watanabe.



Thank you!

www.pseudocodewords.info
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